Reactive oxygen species and nitric oxide (NO•) concomitantly play essential roles in guard cell signaling. Studies using catalase mutants have revealed that the inducible and constitutive elevations of intracellular hydrogen peroxide (H2O2) have different roles: only the inducible H2O2 production transduces the abscisic acid (ABA) signal leading stomatal closure. However, the involvement of inducible or constitutive NO• productions, if exists, in this process remains unknown. We studied H2O2 and NO• mobilization in guard cells of catalase mutants. Constitutive H2O2 level was higher in the mutants than that in wild type, but constitutive NO• level was not different among lines. Induced NO• and H2O2 levels elicited by ABA showed a high correlation with each other in all lines. Furthermore, NO• levels increased by exogenous H2O2 also showed a high correlation with stomatal aperture size. Our results demonstrate that ABA-induced intracellular H2O2 accumulation triggers NO• production leading stomatal closure.
Abbreviations: ABA: abscisic acid; CAT: catalase; cGMP: cyclic guanosine monophosphate; DAF-2DA: 4,5-diaminofluorescein-2 diacetate; H2DCF-DA: 2',7'-dichlorodihydrofluorescein diacetate; MeJA: methyljasmonate; NOS: nitric oxide synthetase; NR: nitrate reductase; POX: peroxidase; ROS: reactive oxygen species; SNAP: S-nitroso-N-acetyl-DL-penicillamine; SNP: sodium nitroprusside; NOX: NADP(H) oxidase.
Keywords: Abscisic acid; catalase; hydrogen peroxide; nitric oxide; stomatal closure.