Study design: Retrospective cohort. We present a simple classification system that is able to identify patients with increased odds of losing intraoperative neuromonitoring data during thoracic deformity correction. Type 3 spinal cords, with the cord deformed against the concave pedicle in the axial plane, have ×28 greater odds of losing monitoring data during surgery.
Objectives: Assess preoperative morphology of the spinal cord across the thoracic concavity to predict intraoperative loss of neuromonitoring data.
Methods: 128 consecutive patients undergoing surgical correction of a thoracic deformity with pedicle screw/rod constructs were included. Spinal cords were classified into 3 types based on the appearance of the cord on the axial-T2 MRI at the apex of the curve. Type 1 is defined as a circular/symmetric cord with visible CSF between the cord and the apical concave pedicle/vertebral body. Type 2 is a circular/oval/symmetric cord with no visible CSF between the concave pedicle and the cord. Type 3 is a spinal cord that is flattened/deformed by the apical concave pedicle or vertebral body, with no intervening CSF (Fig. 1).
Results: 128 patients were reviewed: 81 (63%) Type 1; 32 (25%) Type 2; and 12 (11.7%) Type 3 spinal cords. Lower extremity trans-cranial motor-evoked Potentials (MEPs) and/or somatosensory evoked potentials (SSEPs) were lost intraoperatively in 21 (16%) cases, with full recovery of data in 20 of those cases. On regression analysis, a Type 1 cord was protective against intraoperative data loss (OR = 0.17, p = 0.0003). Type 2 cords had no association with data loss (OR = 0.66, p = 0.49). Type 3 cords had significantly higher odds of intraoperative data loss (OR = 28.3, p < 0.0001).
Conclusions: We present a new spinal cord risk classification scheme to identify patients with increased odds of losing spinal cord monitoring data with thoracic deformity correction. The odds of losing intraoperative MEPs/SSEPs are greater in type 3 spinal cords.
Level of evidence: III.