Bone cancer pain (BCP) is one of the most common types of chronic cancer pain and its pathogenesis has not been fully understood. Long non-coding RNAs (lncRNAs) are new promising targets in the field of pain research, however, their involvements in BCP have not been reported. In the present study, we established the BCP model by implantation of Walker 256 carcinoma cells into rats' tibial medullary cavity and performed transcriptome sequencing of the ipsilateral lumbar spinal cord to explore changes in expression profiles of lncRNA and mRNA. We identified 1220 differently expressed mRNAs (DEmRNAs) (1171 up-regulated and 49 down-regulated) and 323 differently expressed lncRNAs (DElncRNAs) (246 up-regulated and 77 down-regulated) in BCP model, among which 10 DEmRNAs (5 up-regulated and 5 down-regulated) and 10 DElncRNAs (5 up-regulated and 5 down-regulated) were validated the expression by RT-qPCR. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on the expression of DEmRNAs and DElncRNAs, showing that they were mainly enriched in inflammatory and immunologic processes/pathways. Finally, we constructed a co-expression network and a ceRNA network of DEmRNAs and DElncRNAs to exhibit a potential regulatory mechanism of DElncRNAs, directly regulating protein coding gene expression in cis or in trans and indirectly regulating protein coding gene expression by sponging miRNA. In conclusion, our study provided a landscape of dysregulated lncRNA and mRNA in spinal cord of bone cancer pain and detected novel potential targets for treatment in the future.
Keywords: Bone cancer pain; High-throughput RNA sequencing; Long noncoding RNA; mRNA.