Retinal pigment epithelial cells are crucial for retina maintenance, making their cytoprotection an excellent way to prevent or slow down retinal degeneration. In addition, oxidative stress, inflammation, apoptosis, neovascularization, and/or autophagy are key pathways involved in degenerative mechanisms. Therefore, here we studied the effects of curcumin, lutein, and/or resveratrol on human retinal pigment epithelial cells (ARPE-19). Cells were incubated with individual or combined agent(s) before induction of (a) H2O2-induced oxidative stress, (b) staurosporin-induced apoptosis, (c) CoCl2-induced hypoxia, or (d) a LED-autophagy perturbator. Metabolic activity, cellular survival, caspase 3/7 activity (casp3/7), cell morphology, VEGF levels, and autophagy process were assessed. H2O2 provoked a reduction in cell survival, whereas curcumin reduced metabolic activity which was not associated with cell death. Cell death induced by H2O2 was significantly reduced after pre-treatment with curcumin and lutein, but not resveratrol. Staurosporin increased caspase-3/7 activity (689%) and decreased cell survival by 32%. Curcumin or lutein protected cells from death induced by staurosporin. Curcumin, lutein, and resveratrol were ineffective on the increase of caspase 3/7 induced by staurosporin. Pre-treatment with curcumin or lutein prevented LED-induced blockage of autophagy flux. Basal-VEGF release was significantly reduced by lutein. Therefore, lutein and curcumin showed beneficial protective effects on human-derived retinal cells against several insults.
Keywords: antioxidant; apoptosis; autophagy; damage; lutein; protection curcumin; resveratrol; retina.