Improved biotin, thiamine, and lipoic acid biosynthesis by engineering the global regulator IscR

Metab Eng. 2020 Jul:60:97-109. doi: 10.1016/j.ymben.2020.03.005. Epub 2020 Mar 25.

Abstract

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.

Keywords: Biotin; Iron-sulfur cluster; IscR; Lipoic acid; Thiamine; Vitamins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biotin / analogs & derivatives
  • Biotin / biosynthesis*
  • Biotin / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics*
  • Fermentation
  • Iron-Sulfur Proteins / metabolism
  • Metabolic Engineering / methods*
  • Models, Molecular
  • Proteomics
  • Sulfurtransferases / metabolism
  • Thiamine / biosynthesis*
  • Thioctic Acid / biosynthesis*
  • Transcription Factors / genetics*

Substances

  • Escherichia coli Proteins
  • Iron-Sulfur Proteins
  • IscR protein, E coli
  • Transcription Factors
  • Biotin
  • desthiobiotin
  • Thioctic Acid
  • Sulfurtransferases
  • biotin synthetase
  • Thiamine