Method to retrieve aerosol extinction profiles and aerosol scattering phase functions with a modified CCD laser atmospheric detection system

Opt Express. 2020 Mar 2;28(5):6631-6647. doi: 10.1364/OE.386214.

Abstract

Vertical distributions of ambient aerosols and their corresponding optical properties are crucial to the assessment of aerosol radiative effects. Traditionally, ambient aerosol phase function is assumed as a constant of input parameter in the retrieval of the vertical distribution of aerosol optical characteristics from remote sensing measurements (e.g. lidar or camera-laser based instruments). In this work, sensitivity studies revealed that using constant aerosol phase function assumptions in the algorithm would cause large uncertainties. Therefore, an improved retrieval method was established to simultaneously measure ambient aerosol scattering phase functions and aerosol scattering function profiles with a modified charge-coupled device-laser aerosol detection system (CLADS), which are then combined to yield vertical profiles of aerosol extinction coefficients. This method was applied and evaluated in a comprehensive field campaign in the North China Plain during January 2016. The algorithm showed robust performance and was able to capture temporal variations in ambient aerosol scattering phase functions and aerosol scattering function profiles. Aerosol extinction coefficients derived with simultaneously measured aerosol phase functions agreed well with in-situ measurements, indicating that uncertainties in the retrieval of aerosol extinction vertical profiles have been significantly reduced by using the proposed method with the modified CLADS. The advantage of this modified CLADS is that it can accomplish these aerosol measurements independent of other supplementary instruments. Benefiting from its low cost and high spatial resolution (∼1 m on average) in the boundary layer, this measurement system can play an important role in the research of aerosol vertical distributions and its impacts on environmental and climatic studies.