Vitamin D Attenuates Loss of Endothelial Biomarker Expression in Cardio-Endothelial Cells

Int J Mol Sci. 2020 Mar 22;21(6):2196. doi: 10.3390/ijms21062196.

Abstract

Vitamin D is associated with cardiovascular health through activating the vitamin D receptor that targets genes related to cardiovascular disease (CVD). The human cardiac microvascular endothelial cells (HCMECs) were used to develop mechanically and TGF-β1-induced fibrosis models, and the rat was used as the isoproterenol (ISO)-induced fibrosis model. The rats were injected with ISO for the first five days, followed by vitamin D injection for the consecutive three weeks before being sacrificed on the fourth week. Results showed that mechanical stretching reduced endothelial cell marker CD31 and VE-cadherin protein expressions, as well as increased α-smooth muscle actin (α-SMA) and fibronectin (FN). The transforming growth factor-β1 (TGF-β1) reduced CD31, and increased α-SMA and FN protein expression levels. Vitamin D presence led to higher protein expression of CD31, and lower protein expressions of α-SMA and FN compared to the control in the TGF-β1-induced fibrosis model. Additionally, protein expression of VE-cadherin was increased and fibroblast-specific protein-1 (FSP1) was decreased after vitamin D treatment in the ISO-induced fibrosis rat. In conclusion, vitamin D slightly inhibited fibrosis development in cell and animal models. Based on this study, the beneficial effect of vitamin D may be insignificant; however, further investigation of vitamin D's effect in the long-term is required in the future.

Keywords: TGF-β1; cardiovascular disease; fibrosis; stretching; vitamin D.

MeSH terms

  • Animals
  • Biomarkers / analysis
  • Cardiovascular Diseases / drug therapy*
  • Cardiovascular Diseases / pathology
  • Cell Line
  • Disease Models, Animal
  • Endothelium / drug effects*
  • Endothelium / pathology
  • Fibrosis
  • Heart / drug effects*
  • Humans
  • Male
  • Myocardium / pathology*
  • Rats
  • Rats, Inbred WKY
  • Vitamin D / therapeutic use*
  • Vitamins / therapeutic use*

Substances

  • Biomarkers
  • Vitamins
  • Vitamin D