The present work aimed to investigate the antioxidant, anti-inflammatory and wound healing potential of ethyl acetate fraction from Bauhinia ungulata L. (FABU) on in vitro and in vivo models. Wound healing assay using human lung adenocarcinoma A549 cell line was employed to evaluate the ability of FABU in modulating cell migration. In addition, a surgical wound model in C57BL/6 mice was used to study the healing potential of FABU incorporated into gel carbomer 940 (Carbopol®). Evaluation of lipid peroxidation, inflammatory and anti-inflammatory mediator gene expression, rate of wound closure, and histological analysis were done. FABU significantly reduced the gap area in in vitro wound healing assay, 24 h after treatment. In the animal model, FABU at 0.5% topically applied once-daily for 5 days to the surgical wounds significantly reduced the lesion area. Moreover, it significantly decreased the levels of lipid peroxidation in the lesions and decreased the relative gene expression levels of IL-1β and TNF-α in the injured region. In conclusion, our study suggests that Bauhinia ungulata can effectively promote the wound healing, probably by regulating the inflammatory environment during the early stages of the process.
Keywords: Antioxidant activity; Bauhinia ungulata; Cell migration; Phenolic compounds; Wound healing.