Nowadays, searching for new therapeutic targets for cerebral stroke treatment are still in urgent need. Our study explored the influences and mechanisms of HIF-1α on OGD/R-evoked injury. OGD/R treatment was conducted on PC12 cells to simulate ischemic injury. CCK-8, flow cytometry and qRT-PCR were conducted to determine the variations of cell viability, apoptosis and gene expression, respectively. Cell transfections were conducted to overexpress HIF-1α and miR-134. Variations of protein levels were evaluated by employing western blot. Results showed that OGD/R treatment induced cell injury through reducing viability, while enhancing apoptosis that was validated by the elevated ratios of C/P-PARP and C/P-caspase-3. HIF-1α expression was markedly increased by OGD/R treatment. HIF-1α overexpression attenuated OGD/R-evoked injury in PC12 cells and remarkably reversed OGD/R-triggered inhibitory effects on ERK1/2 and JAK1/STAT3 pathways. Besides, miR-134 was also down-regulated by HIF-1α overexpression in PC12 cells. Up-regulation of miR-134 notably counteracted HIF-1α overexpression-triggered neuro-protective impacts on OGD/R-evoked injury and ERK1/2 and JAK1/STAT3 pathways. Our present study reported that HIF-1α overexpression protected PC12 cells against OGD/R-evoked injury via down-regulation of miR-134, which making HIF-1α and miR-134 to be promising targets for cerebral stroke therapy.
Keywords: Cerebral stroke; ERK1/2 and JAK1/STAT3 pathways; HIF-1α; miR-134.