Concurrent sexually transmitted infections (STI) can increase the probability of HIV-1 transmission primarily by increasing the viral load present in semen. In this study, we explored the relationship of HIV-1 in blood and seminal plasma in the presence and absence of urethritis and after treatment of the concurrent STI. Primer ID deep sequencing of the V1/V3 region of the HIV-1 env gene was done for paired blood and semen samples from antiretroviral therapy (ART)-naive men living in Malawi with (n = 19) and without (n = 5) STI-associated urethritis; for a subset of samples, full-length env genes were generated for sequence analysis and to test entry phenotype. Cytokine concentrations in the blood and semen were also measured, and a reduction in the levels of proinflammatory cytokines was observed following STI treatment. We observed no difference in the prevalence of diverse compartmentalized semen-derived lineages in men with or without STI-associated urethritis, and these viral populations were largely stable during STI treatment. Clonal amplification of one or a few viral sequences accounted for nearly 50% of the viral population, indicating a recent bottleneck followed by limited viral replication. We conclude that the male genital tract is a site where virus can be brought in from the blood, where localized sustained replication can occur, and where specific genotypes can be amplified, perhaps initially by cellular proliferation but further by limited viral replication.IMPORTANCE HIV-1 infection is a sexually transmitted infection that coexists with other STI. Here, we examined the impact of a concurrent STI resulting in urethritis on the HIV-1 population within the male genital tract. We found that viral populations remain largely stable even with treatment of the STI. These results show that viral populations within the male genital tract are defined by factors beyond transient inflammation associated with a concurrent STI.
Keywords: HIV-1; compartmentalization; genital tract; phylogeny; viral diversity.
Copyright © 2020 American Society for Microbiology.