Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence

PLoS Genet. 2020 Apr 9;16(4):e1008675. doi: 10.1371/journal.pgen.1008675. eCollection 2020 Apr.

Abstract

Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fungal Proteins / genetics*
  • Gene Deletion
  • Grasshoppers / metabolism*
  • Grasshoppers / microbiology
  • Insect Proteins / metabolism
  • Metarhizium / genetics*
  • Metarhizium / pathogenicity
  • Monoamine Oxidase / genetics*
  • Reactive Oxygen Species / metabolism
  • Receptors, Aryl Hydrocarbon / metabolism
  • Tryptamines / metabolism*
  • Virulence / genetics

Substances

  • Fungal Proteins
  • Insect Proteins
  • Reactive Oxygen Species
  • Receptors, Aryl Hydrocarbon
  • Tryptamines
  • tryptamine
  • Monoamine Oxidase

Grants and funding

Prof. Le Kang received the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB11010000 (http://www.cas.cn/xxgkml/zgkxyyb/kxyj/xdzx/). Dr. Yundan Wang received National Natural Science Foundation of China, Grant No. 31670420 (https://isisn.nsfc.gov.cn/egrantweb/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.