Shortly after birth, mammals are colonized by a multitude of microbes derived from the mother and the environment. Studies in model organisms have demonstrated that the structure and composition of the gut microbiome of offspring steadily mature with increasing diversity during nursing and weaning (Sommer & Bäckhed, 2013). This period of microbiome assembly is critical for young mammals because the gut microbes they acquire will help train their immune system (Lathrop et al., 2011) with potential long-lasting effects on their health (Cox et al., 2014). In an article in this issue of Molecular Ecology, Stoffel et al. (2020) investigated the gut microbiota of northern elephant seals (Mirounga angustirostris) during a key developmental window. A month after giving birth, elephant seal mothers stop nursing their pups and return to the sea. As a consequence, their pups go from a diet of milk rich in fat to abruptly enter a post weaning fasting period which lasts for about two months while they remain with the colony. This particular life-history trait therefore offered the authors a unique and exciting opportunity to evaluate intrinsic factors contributing to gut microbiota development in a wild marine mammal.
Keywords: fasting; genetic relatedness; microbiota; sexual dimorphism; weaning.
© 2020 John Wiley & Sons Ltd.