ZAKα Recognizes Stalled Ribosomes through Partially Redundant Sensor Domains

Mol Cell. 2020 May 21;78(4):700-713.e7. doi: 10.1016/j.molcel.2020.03.021. Epub 2020 Apr 13.

Abstract

Impairment of ribosome function activates the MAPKKK ZAK, leading to activation of mitogen-activated protein (MAP) kinases p38 and JNK and inflammatory signaling. The mechanistic basis for activation of this ribotoxic stress response (RSR) remains completely obscure. We show that the long isoform of ZAK (ZAKα) directly associates with ribosomes by inserting its flexible C terminus into the ribosomal intersubunit space. Here, ZAKα binds helix 14 of 18S ribosomal RNA (rRNA). An adjacent domain in ZAKα also probes the ribosome, and together, these sensor domains are critically required for RSR activation after inhibition of both the E-site, the peptidyl transferase center (PTC), and ribotoxin action. Finally, we show that ablation of the RSR response leads to organismal phenotypes and decreased lifespan in the nematode Caenorhabditis elegans (C. elegans). Our findings yield mechanistic insight into how cells detect ribotoxic stress and provide experimental in vivo evidence for its physiological importance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / growth & development*
  • Caenorhabditis elegans / metabolism
  • Enzyme Activation
  • HeLa Cells
  • Humans
  • MAP Kinase Kinase Kinases / antagonists & inhibitors
  • MAP Kinase Kinase Kinases / genetics
  • MAP Kinase Kinase Kinases / metabolism*
  • Peptidyl Transferases / metabolism*
  • Protein Conformation
  • Protein Domains
  • RNA, Ribosomal, 18S / genetics
  • RNA, Ribosomal, 18S / metabolism*
  • Ribosomes / metabolism*
  • Sequence Homology
  • Signal Transduction
  • Stress, Physiological*

Substances

  • RNA, Ribosomal, 18S
  • Peptidyl Transferases
  • MAP Kinase Kinase Kinases
  • MAP3K20 protein, human