Carbohydrates are complex biopolymers naturally found in almost all living organisms; their structural variability is gaining much attention in the field of glycobiology. Originally, macromolecular carbohydrates have been developed on huge industrial scales for foodstuffs, oil well drilling, textiles, paper, and electrical insulation. Over the last few decades, however, in addition to these applications, dependent on the physicochemical properties, carbohydrate polymers has presented biological activities. Polysaccharides are now extensively exploited for their remarkable applications in the pharmaceutical industries and biomedicine. An increasing number of oligo- and poly-saccharides now have their monosaccharide composition and structure defined. Many of their biological activities have been related to their chemical structures. Carbohydrates have the capability of binding onto the cell surface of microorganisms to induce the disruption of the cell membrane. They can reduce worm and egg burden, and act as carriers for biopesticides. Carbohydrates affect immune responses, suggesting potential immunomodulatory functions, including the use of adjuvants in vaccines. In addition, they also have therapeutic potential, for example acting as wound healing agents and blocking the high rate of proliferation of malignant cells. This review provides a summary of recent developments in biotechnology and biomedical treatments using well-established and newly described carbohydrates.
Keywords: Antipathogenic agents; Biomedical treatments; Immunomodulation.
Copyright © 2020 Elsevier B.V. All rights reserved.