Insight into the RssB-Mediated Recognition and Delivery of σs to the AAA+ Protease, ClpXP

Biomolecules. 2020 Apr 16;10(4):615. doi: 10.3390/biom10040615.

Abstract

In Escherichia coli, SigmaS (σS) is the master regulator of the general stress response. The cellular levels of σS are controlled by transcription, translation and protein stability. The turnover of σS, by the AAA+ protease (ClpXP), is tightly regulated by a dedicated adaptor protein, termed RssB (Regulator of Sigma S protein B)-which is an atypical member of the response regulator (RR) family. Currently however, the molecular mechanism of σS recognition and delivery by RssB is only poorly understood. Here we describe the crystal structures of both RssB domains (RssBN and RssBC) and the SAXS analysis of full-length RssB (both free and in complex with σS). Together with our biochemical analysis we propose a model for the recognition and delivery of σS by this essential adaptor protein. Similar to most bacterial RRs, the N-terminal domain of RssB (RssBN) comprises a typical mixed (βα)5-fold. Although phosphorylation of RssBN (at Asp58) is essential for high affinity binding of σS, much of the direct binding to σS occurs via the C-terminal effector domain of RssB (RssBC). In contrast to most RRs the effector domain of RssB forms a β-sandwich fold composed of two sheets surrounded by α-helical protrusions and as such, shares structural homology with serine/threonine phosphatases that exhibit a PPM/PP2C fold. Our biochemical data demonstrate that this domain plays a key role in both substrate interaction and docking to the zinc binding domain (ZBD) of ClpX. We propose that RssB docking to the ZBD of ClpX overlaps with the docking site of another regulator of RssB, the anti-adaptor IraD. Hence, we speculate that docking to ClpX may trigger release of its substrate through activation of a "closed" state (as seen in the RssB-IraD complex), thereby coupling adaptor docking (to ClpX) with substrate release. This competitive docking to RssB would prevent futile interaction of ClpX with the IraD-RssB complex (which lacks a substrate). Finally, substrate recognition by RssB appears to be regulated by a key residue (Arg117) within the α5 helix of the N-terminal domain. Importantly, this residue is not directly involved in σS interaction, as σS binding to the R117A mutant can be restored by phosphorylation. Likewise, R117A retains the ability to interact with and activate ClpX for degradation of σS, both in the presence and absence of acetyl phosphate. Therefore, we propose that this region of RssB (the α5 helix) plays a critical role in driving interaction with σS at a distal site.

Keywords: AAA+ protease; ClpX; RssB; SigmaS; X-ray structure; adaptor protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATPases Associated with Diverse Cellular Activities / chemistry
  • ATPases Associated with Diverse Cellular Activities / metabolism*
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / metabolism*
  • Endopeptidase Clp / chemistry
  • Endopeptidase Clp / metabolism*
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / metabolism*
  • Models, Molecular
  • Molecular Chaperones / chemistry
  • Molecular Chaperones / metabolism*
  • Mutation / genetics
  • Phosphorylation
  • Protein Binding
  • Protein Domains
  • Scattering, Small Angle
  • Sigma Factor / chemistry
  • Sigma Factor / metabolism
  • Transcription Factors / chemistry
  • Transcription Factors / metabolism*
  • X-Ray Diffraction

Substances

  • DNA-Binding Proteins
  • Escherichia coli Proteins
  • IraD protein, E coli
  • Molecular Chaperones
  • Sigma Factor
  • Transcription Factors
  • rssB protein, E coli
  • ClpP protease, E coli
  • Endopeptidase Clp
  • ClpX protein, E coli
  • ATPases Associated with Diverse Cellular Activities