Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of metabolism due to the deficiency of mitochondrial MMUT (methylmalonyl-CoA mutase) - an enzyme that mediates the cellular breakdown of certain amino acids and lipids. The loss of MMUT leads to the accumulation of toxic organic acids causing severe organ dysfunctions and life-threatening complications. The mechanisms linking MMUT deficiency, mitochondrial alterations and cell toxicity remain uncharacterized. Using cell and animal-based models, we recently unveiled that MMUT deficiency impedes the PINK1-induced translocation of PRKN/Parkin to MMA-damaged mitochondria, thereby halting their delivery and subsequent degradation by macroautophagy/autophagy-lysosome systems. In turn, this defective mitophagy process instigates the accumulation of dysfunctional mitochondria that spark epithelial distress and tissue damage. Correction of PINK1-directed mitophagy defects or mitochondrial dysfunctions rescues epithelial distress in MMA cells and alleviates disease-relevant phenotypes in mmut‒deficient zebrafish. Our findings suggest a link between primary MMUT deficiency and diseased mitochondria, mitophagy dysfunction and cell distress, offering potential therapeutic perspectives for MMA and other metabolic diseases.
Keywords: Cell damage; inherited metabolic disorders; kidney tubule; metabolism; mitochondria; mitophagy; oxidative stress.