A fluorescence off-on sensing platform was developed based on thioglycolic acid-stabilized cadmium sulfide quantum dots (CdS QDs) as fluorescence probe for the sensitive and selective detection of 2,6-pyridinedicarboxylic acid (DPA) in spores. The fluorescence emission intensity of the quantum dots at 650 nm when excited at 460 nm was first quenched by mixing with europium ions (Eu3+) and then recovered after the addition of DPA. The interaction of DPA with Eu3+ relieved the quenching effect of Eu3+ toward CdS QDs. As the DPA concentration increases, the color of the probe changes from colorless to red. The method exhibits a wide linear range from 1 to 120 μM for DPA determination, with a detection limit of 0.2 μM. The CdS QDs based nanoprobe was successfully applied for sensitive determination of DPA released from bacteria spores. In this case, the detection limit is 3.5 × 104 CFU·mL-1. Graphical abstract An off-on fluorescence sensor for detecting anthrax markers -2,6-pyridinedicarboxylic acid though restoring the fluorescence of cadmium sulfide quantum dots quenching by europium ions.
Keywords: 2, 6-Pyridinedicarboxylic acid; Bacillus anthracis; Bacteria spores; CdS quantum dots; Fluorescence recovery.