Antibiotic collateral sensitivity (CS) occurs when a bacterium that acquires resistance to a treatment drug exhibits decreased resistance to a different drug. Here we identify reciprocal CS networks and candidate genes in Burkholderia multivorans. Burkholderia multivorans was evolved to become resistant to each of six antibiotics. The antibiogram of the evolved strain was compared with the immediate parental strain to determine CS and cross-resistance. The evolution process was continued for each resistant strain. CS interactions were observed in 170 of 279 evolved strains. CS patterns grouped into two clusters based on the treatment drug being a β-lactam antibiotic or not. Reciprocal pairs of CS antibiotics arose in ≥25% of all evolved strains. A total of 68 evolved strains were subjected to whole-genome sequencing and the resulting mutation patterns were correlated with antibiograms. Analysis revealed there was no single gene responsible for CS and that CS seen in B. multivorans is likely due to a combination of specific and non-specific mutations. The frequency of reciprocal CS, and the degree to which resistance changed, suggests a long-term treatment strategy; when resistance to one drug occurs, switch to use of the other member of the reciprocal pair. This switching could theoretically be continued indefinitely, allowing life-long treatment of chronic infections with just two antibiotics.
Keywords: Antibiotic resistance; Burkholderia; Collateral sensitivity.
Copyright © 2020 Elsevier Ltd. All rights reserved.