Intraglomerular Monocyte/Macrophage Infiltration and Macrophage-Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A2B Adenosine Receptor

Cells. 2020 Apr 23;9(4):1051. doi: 10.3390/cells9041051.

Abstract

Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage-myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-β induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.

Keywords: A2B adenosine receptor; adenosine; diabetic kidney disease; glomerulosclerosis; macrophage–myofibroblast transition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetamides / pharmacology
  • Adenosine A2 Receptor Antagonists / pharmacology
  • Animals
  • Biomarkers / metabolism
  • Cell Adhesion Molecules / metabolism
  • Chemokines / metabolism
  • Chemotactic Factors / pharmacology
  • Diabetic Nephropathies / metabolism*
  • Diabetic Nephropathies / pathology*
  • Fibrosis
  • Humans
  • Kidney Glomerulus / drug effects
  • Kidney Glomerulus / pathology
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Macrophages / pathology*
  • Male
  • Monocytes / drug effects
  • Monocytes / metabolism
  • Monocytes / pathology*
  • Myofibroblasts / drug effects
  • Myofibroblasts / metabolism
  • Myofibroblasts / pathology*
  • Purines / pharmacology
  • Rats, Sprague-Dawley
  • Receptor, Adenosine A2B / metabolism*
  • Transcription, Genetic / drug effects

Substances

  • Acetamides
  • Adenosine A2 Receptor Antagonists
  • Biomarkers
  • Cell Adhesion Molecules
  • Chemokines
  • Chemotactic Factors
  • N-(4-cyanophenyl)-2-(4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy)acetamide
  • Purines
  • Receptor, Adenosine A2B