This article proposes a vision-based method of determining in which of the three states, defined in the spin recovery process, is an aircraft. The correct identification of this state is necessary to make the right decisions during the spin recovery maneuver. The proposed solution employs a keypoints displacements analysis in consecutive frames taken from the on-board camera. The idea of voting on the temporary location of the rotation axis and dominant displacement direction was used. The decision about the state is made based on a proposed set of rules employing the histogram spread measure. To validate the method, experiments on flight simulator videos, recorded at varying altitudes and in different lighting, background, and visibility conditions, were carried out. For the selected conditions, the first flight tests were also performed. Qualitative and quantitative assessments were conducted using a multimedia data annotation tool and the Jaccard index, respectively. The proposed approach could be the basis for creating a solution supporting the pilot in the process of aircraft spin recovery and, in the future, the development of an autonomous method.
Keywords: aircraft spin phase detection; aircraft spin recovery; computer vision; image analysis; keypoints matching.