Faces are processed in a network of areas within regions of the ventral visual stream. However, familiar faces typically are characterized by additional associated information, such as episodic memories or semantic biographical information as well. The acquisition of such non-sensory, identity-specific knowledge plays a crucial role in our ability to recognize and identify someone we know. The occipital face area (OFA), an early part of the core face-processing network, is recently found to be involved in the formation of identity-specific memory traces but it is currently unclear if this role is limited to unimodal visual information. The current experiments used transcranial magnetic stimulation (TMS) to test whether the OFA is involved in the association of a face with identity-specific semantic information, such as the name or job title of a person. We applied an identity-learning task where unfamiliar faces were presented together with a name and a job title in the first encoding phase. Simultaneously, TMS pulses were applied either to the left or right OFA or to Cz, as a control. In the subsequent retrieval phase, the previously seen faces were presented either with two names or with two job titles and the task of the participants was to select the semantic information previously learned. We found that the stimulation of the right or left OFA reduced subsequent retrieval performance for the face-associated job titles. This suggests a causal role of the OFA in the association of faces and related semantic information. Furthermore, in contrast to prior findings, we did not observe hemispherical differences of the TMS intervention, suggesting a similar role of the left and right OFAs in the formation of the visual-semantic associations. Our results suggest the necessity to reconsider the hierarchical face-perception models and support the distributed and recurrent models.
Keywords: Face processing network; Occipital face area; Recognition; Semantic face processing; Semantic information; Transcranial magnetic stimulation.