Desmoplastic small round cell tumor (DSRCT) is a rare and aggressive soft-tissue malignancy with a poor overall survival and no effective therapeutic options. The tumor is believed to be dependent on the continued activity of the oncogenic EWS-WT1 transcription factor. However, the dependence of the tumor on EWS-WT1 has not been well established. In addition, there are no studies exploring the downstream transcriptional program across multiple cell lines. In this study, we have developed a novel approach to selectively silence EWS-WT1 without impacting either wild-type EWSR1 or WT1. We show a clear dependence of the tumor on EWS-WT1 in two different cell lines, BER and JN-DSCRT-1. In addition, we identify and validate important downstream target pathways commonly dysregulated in other translocation-positive sarcomas, including PRC2, mTOR, and TGFB. Surprisingly, there is striking overlap between the EWS-WT1 and EWS-FLI1 gene signatures, despite the fact that the DNA-binding domain of the fusion proteins, WT1 and FLI1, is structurally unique and classified as different types of transcription factors. This study provides important insight into the biology of this disease relative to other translocation-positive sarcomas, and the basis for the therapeutic targeting of EWS-WT1 for this disease that has limited therapeutic options.