The aim of the study was to assess the antihyperglycemic, antilipidemic, and antioxidant effects of a lectin isolated from Bryothamnion seaforthii (BSL), on rats with streptozotocin (STZ)-induced diabetes. The disease model was induced by low-dose injections of STZ. Diabetic rats were treated with NaCl 150 mM, metformin, and BSL at different concentrations. Blood collection was carried out at 0, 30, 60, 90, and 120 days after hyperglycemia confirmation via the assessment of seric glucose, total cholesterol, and triglycerides, assessment of the enzymatic levels of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), and the determination of insulin resistance by a homeostasis model of assessment-insulin resistance (HOMA-IR) as well as a homeostasis model of assessment of β-cells resistance (HOMA-β). The BSL-treated animals at all three concentrations showed a significant reduction in levels of glucose, cholesterol, total cholesterol, and triglycerides. Moreover, BSL increased the enzymatic activity of GPx and SOD. Index assessments of HOMA-IR and HOMA-β confirmed that BSL treatment significantly decreased insulin resistance and β-cell hypersecretion, respectively. In conclusion, BSL treatment might exert hypoglycemic and hypolipidemic effects, diminish insulin resistance, and ameliorate pancreatic β-cell function along with enzymatic activities toward oxidative stress caused by diabetes mellitus type 2 (T2DM).
Keywords: Algae lectins; Hyperglycemia; Oxidative stress.
Copyright © 2020 Elsevier B.V. All rights reserved.