Animals can use a range of strategies to recall important locations. These include simple stimulus-response strategies and more complex spatial (place) strategies, which are thought to have distinct neural substrates. The hippocampus-and NMDA receptor activation therein-is considered to be crucial for spatial, but not response strategies. The medial prefrontal cortex has also been implicated in memory retrieval; however, evidence concerning its specific role is equivocal. Both hippocampal and prefrontal regions have been associated with flexible behavioural responding (e.g. when task demands change). Here, we investigated the use of spatial and non-spatial strategies in the Morris water maze and their associated brain areas in rats using immediate early gene (IEG) imaging of Zif268 and c-Fos. Specifically, we charted the involvement of hippocampal and prefrontal subregions during retrieval of spatial and non-spatial memories. Behavioural flexibility was also examined using intact and partial cue configurations during recall. Results indicated that regions of both the hippocampus (area CA3) and prefrontal cortex (anterior cingulate cortex) were preferentially engaged in spatial memory recall compared to response learning. In addition, both spatial and non-spatial memories were dependent on NMDA receptor activation. MK801 impaired recall performance across all groups and reduced IEG activation across hippocampal and prefrontal regions. Finally, IEG results revealed divergent patterns of Zif268 and c-Fos activity and support the suggestion that Zif268 plays a functional role in the recall of long-term memories.
Keywords: Morris water maze; glutamate receptors; immediate early gene; rodents; spatial learning.
© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.