Congenital uterine anomalies (CUA) may have major impacts on the health and social well-being of affected individuals. Their expressivity is variable, with the most severe end of the spectrum being the absence of any fully or unilaterally developed uterus (aplastic uterus), which is a major feature in Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH). So far, etiologies of CUA remain largely unknown. As reports of familial occurrences argue for strong genetic contributors in some cases, we performed whole exome sequencing in nine multiplex families with recurrence of uterine and kidney malformations, a condition called hereditary urogenital adysplasia. Heterozygous likely causative variants in the gene GREB1L were identified in four of these families, confirming GREB1L as an important gene for proper uterine and kidney development. The apparent mode of inheritance was autosomal dominant with incomplete penetrance. The four families included fetuses with uterovaginal aplasia and bilateral renal agenesis, highlighting the importance to investigate GREB1L in such phenotypes. Subsequent sequencing of the gene in a cohort of 68 individuals with MRKH syndrome or uterine malformation (mostly sporadic cases) identified six additional variants of unknown significance. We therefore conclude that heterozygous GREB1L variants contribute to MRKH syndrome and this probably requires additional genetic or environmental factors for full penetrance.
Keywords: GREB1L; Mayer-Rokitansky-Kuster-Hauser syndrome; Mullerian aplasia; hereditary renal agenesis; renal adysplasia; renal and Mullerian duct hypoplasia; urogenital abnormalities; uterine anomalies.
© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.