The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions

Physiol Rep. 2020 May;8(9):e14421. doi: 10.14814/phy2.14421.

Abstract

Introduction: Aging is associated with impaired cerebrovascular blood flow and function, attributed to reduced vasodilatory capacity of the cerebrovascular network. Older adults may also have an impaired relationship between changes in blood pressure and cerebral blood flow; however, previous reports conflict. This study aimed to compare the blood pressure and cerebral blood flow responses to both repeated and sustained stand-to-sit transitions in young and older adults, and to assess the relationship with cerebrovascular reactivity.

Methods: In 20 young (age: 24 ± 4 years) and 20 older (age: 71 ± 7 years) adults we compared middle cerebral artery flow velocity (MCAv), end-tidal partial pressure of carbon dioxide (PET CO2 ), and blood pressure (mean arterial blood pressure [MAP]) during repeated stand-to-sit (10 s standing and 10 s sitting) and sustained stand-to-sit (3 min standing followed by 2 min sitting) transitions. Cerebrovascular reactivity to changes in carbon dioxide levels was assessed using a repeated breath-hold test.

Results: The % change in MCAv per % change in MAP (%∆MCAv/%∆MAP) was higher in the older adults than in the young adults during repeated stand-to-sit transitions. During the sustained protocol the %∆MCAv/%∆MAP response was similar in both age groups. A high %∆MCAv/%∆MAP response during the repeated stand-to-sit protocol was associated with low cerebrovascular reactivity to CO2 (r = -.39; p < .01), which was significantly lower in the older adults.

Conclusion: These findings suggest that the higher %∆MCAv/%∆MAP during repeated stand-sit transitions was associated with impaired cerebrovascular reactivity. Impairments in endothelial function and vascular stiffness with age may contribute to the altered transient cerebral pressure-flow responses in older adults.

Keywords: MCAv; TCD; aging; cerebral perfusion; cerebral pressure-flow relationship; middle cerebral artery; vascular function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Blood Flow Velocity
  • Blood Pressure
  • Carbon Dioxide / physiology
  • Cerebrovascular Circulation / physiology*
  • Exercise / physiology*
  • Female
  • Hemodynamics
  • Humans
  • Male
  • Middle Cerebral Artery / physiology
  • Sitting Position
  • Standing Position
  • Vasodilation
  • Young Adult

Substances

  • Carbon Dioxide