State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser-powder-melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.