Entanglement witness is of great importance in characterizing quantum systems. The imperfections in conventional entanglement witness schemes could lead to the misidentification of a separated state as an entangled state. Measurement-device-independent entanglement witness (MDIEW) has been proposed and demonstrated to resolve the imperfect measurement devices. So far, however, the MDIEW has been restricted to a two-party qubit entangled state. Here, for the first time, we demonstrate MDIEW for multipartite entangled states. We experimentally detect the genuine entanglement and the entanglement structure of a tripartite entangled state based on an eight-photon interferometry. Furthermore, with the verified multipartite entangled state, we demonstrate quantum randomness generation and open-destination quantum key distribution in an measurement-device-independent manner. Our research presents an important step toward building a robust and secure quantum network.