Grading for cancer, based upon the degree of cancer differentiation, plays a major role in describing the characteristics and behavior of the cancer and determining treatment plan for patients. The grade is determined by a subjective and qualitative assessment of tissues under microscope, which suffers from high inter- and intra-observer variability among pathologists. Digital pathology offers an alternative means to automate the procedure as well as to improve the accuracy and robustness of cancer grading. However, most of such methods tend to mimic or reproduce cancer grade determined by human experts. Herein, we propose an alternative, quantitative means of assessing and characterizing cancers in an unsupervised manner. The proposed method utilizes conditional generative adversarial networks to characterize tissues. The proposed method is evaluated using whole slide images (WSIs) and tissue microarrays (TMAs) of colorectal cancer specimens. The results suggest that the proposed method holds a potential for quantifying cancer characteristics and improving cancer pathology.