Revealing new therapeutic opportunities through drug target prediction: a class imbalance-tolerant machine learning approach

Bioinformatics. 2020 Aug 15;36(16):4490-4497. doi: 10.1093/bioinformatics/btaa495.

Abstract

Motivation: In silico drug target prediction provides valuable information for drug repurposing, understanding of side effects as well as expansion of the druggable genome. In particular, discovery of actionable drug targets is critical to developing targeted therapies for diseases.

Results: Here, we develop a robust method for drug target prediction by leveraging a class imbalance-tolerant machine learning framework with a novel training scheme. We incorporate novel features, including drug-gene phenotype similarity and gene expression profile similarity that capture information orthogonal to other features. We show that our classifier achieves robust performance and is able to predict gene targets for new drugs as well as drugs that potentially target unexplored genes. By providing newly predicted drug-target associations, we uncover novel opportunities of drug repurposing that may benefit cancer treatment through action on either known drug targets or currently undrugged genes.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computational Biology
  • Computer Simulation
  • Drug Repositioning*
  • Machine Learning*