Self-assembly is ubiquitous in nature and underlies the formation of many complex systems from the molecular to the macroscopic scale. Kern-Frenkel-like patchy particles are powerful models to investigate this phenomenon by computational methods such as Monte Carlo or molecular dynamics simulations. However, in these models the interactions are mediated by circular patches at the particle surface, which can be hardly mapped to realistic systems, containing for instance faceted particles with rectangular surfaces. In this paper we extend the model to take into account such geometries, and we use it to build a supra coarse-grained model of the cellulose nanocrystal where the interactions are parametrized against all-atomistic molecular dynamics simulations. The formation of cholesteric ribbons and defects in cholesteric droplets of the cellulose nanocrystal are investigated and confirm experimental behavior reported in the literature. The flexibility of this new patchy particle model makes it a powerful tool to develop supra coarse-grained models of self-assembly for large space and time scales and should find a broad range of applications for self-assembly in chemical and biological systems.