PPARγ Deficiency in Carbon Nanotube-elicited Granulomatous Inflammation Promotes a Th17 Response to a Microbial Antigen

J Nanomed Nanotechnol. 2020;11(1):541. doi: 10.35248/2157-7439.20.11.541. Epub 2020 Feb 18.

Abstract

Background: The pathological consequences of interaction between environmental carbon pollutants and microbial antigens have not been fully explored. We developed a murine model of multi-wall carbon nanotube (MWCNT)-elicited granulomatous disease which bears a striking resemblance to sarcoidosis, a human granulomatous disease. Because of reports describing lymphocyte reactivity to mycobacterial antigens in sarcoidosis patients, we hypothesized that addition of mycobacterial antigen (ESAT-6) to MWCNT might elicit activation in T cells.

Methods: Macrophage-specific peroxisome-proliferator-activated receptor gamma (PPARγ) knock out (KO) mice were studied along with wild-type mice because our previous report indicated PPARγ deficiency in sarcoidosis alveolar macrophages. MWCNT+ESAT-6 were instilled into mice. Controls received vehicle (surfactant-PBS) or ESAT-6 and were evaluated 60 days post-instillation. As noted in our recent publication, lung tissues from PPARγ KO mice instilled with MWCNT+ESAT-6 yielded more intensive pathophysiology, with elevated fibrosis.

Results: Inspection of mediastinal lymph nodes (MLN) revealed no granulomas but deposition of MWCNT. MLN cell counts were higher in PPARγ KO than in wild-type instilled with MWCNT+ESAT-6. Moreover, the CD4:CD8 T cell ratio, a major clinical metric for human disease, was increased in PPARγ KO mice. Bronchoalveolar lavage (BAL) cells from PPARγ KO mice instilled with MWCNT+ESAT-6 displayed increased Th17 cell markers (RORγt, IL-17A, CCR6) which associate with elevated fibrosis.

Conclusion: These findings suggest that PPARγ deficiency in macrophages may promote ESAT-6-associated T cell activation in the lung, and that the MWCNT+ESAT-6 model may offer new insights into pathways of lymphocyte-mediated sarcoidosis histopathology.

Keywords: Alveolar macrophages; Granulomas; Lymph nodes; Multiwall carbon nanotubes; PPAR gamma; Sarcoidosis; Th 17.