A comparison of bone conductivity on titanium screws inserted into the vertebra using different surface processing

J Exp Orthop. 2020 May 13;7(1):29. doi: 10.1186/s40634-020-00250-w.

Abstract

Purpose: Antibacterial iodine-supported titanium has an anodized oxide layer; thus, it can be expected to have a higher osteoconductivity than untreated titanium. This study aimed to compare the osteoconductivity between untreated titanium (Ti), anodically oxidized titanium (AO-Ti), and iodine-supported titanium (I-Ti) screws.

Methods: The screws were inserted into the vertebral bodies of 30 dogs (12 for the biomechanical, and 18 for the histological examination). The vertebral bodies were analyzed at 4 or 8 weeks after screw insertion. Biomechanically, rotational torque of the screw was measured. Histologically, bone formation index (ratio of the length of the part where the bone directly contacts with the length of the screw) and bone volume density (ratio of the area of the bone tissue to the area between the threads of the screw) were measured.

Result: At 4 weeks, the torque value was significantly higher in the AO-Ti (0.59 ± 0.16 Nm) and I-Ti (0.72 ± 0.14 Nm) groups than in the Ti group (0.39 ± 0.12 Nm), with the AO-Ti and I-Ti groups showing no significant difference. Bone formation index was significantly higher in the AO-Ti (72.5% ± 0.8%) and I-Ti (73.4% ± 1.5%) groups than in the Ti group (64.6% ±1.7%), with the AO-Ti and I-Ti groups showing no significant difference. Bone volume density did not show a significant difference. At 8 weeks, the results were similar to those at 4 weeks.

Conclusions: I-Ti had a higher osteoconductivity than Ti, indicating that iodine coating did not adversely affect osteoconductivity.

Keywords: Biomechanical analysis; Histological analysis; Iodine-supported titanium implant; Osteoconductivity.