The presence of cancer stem cells (CSCs) in the tumor microenvironment is responsible for the development of chemoresistance and recurrence of cancer. Our previous investigation revealed the anticancer mechanism of quinacrine-based silver and gold hybrid nanoparticles (QAgNP and QAuNP) in oral cancer cells, but to avoid cancer recurrence, it is important to study the effect of these nanoparticles (NPs) on CSCs. Here, we developed an in vitro CSCs model using SCC-9 oral cancer cells and validated via FACS analysis. Then, 40-60% of cells were found to be CD44+/CD133+ and CD24-. QAuNP showed excellent anti-CSC growth potential against SCC-9-cancer stem like cells (IC50 = 0.4 μg/mL) with the down-regulation of representative CSC markers. Prolonged exposure of QAuNP induced the S-phase arrest and caused re-replication shown by the extended G2/M population and apoptosis to SCC-9-CSC like cells. Up-regulation of BAX, PARP cleavage, and simultaneous down-regulation of Bcl-xL in prolonged treatment to CSCs suggested that the majority of the cells have undergone apoptosis. QAuNP treatment also caused a loss in DNA repair in CSCs. Mostly, the base excision repair (BER) components (Fen-1, DNA ligase-1, Pol-β, RPA, etc.) were significantly down-regulated after QAuNP treatment, which suggested its action against DNA repair machinery. The replication fork maintenance-related proteins, RAD 51 and BRCA-2, were also deregulated. Very surprisingly, depletion of WRN (an interacting partner for Pre-RC and Fen-1) and a significant increase in expression of fork-degrading nuclease MRE-11 in 96 h treated NPs were observed. Results suggest QAuNP treatment caused excessive DNA damage and re-replication mediated replication stress (RS) and stalling of the replication fork. Inhibition of BER components hinders the flap clearance activity of Fen-1, and it further caused RS and stopped DNA synthesis. Overall, QAuNP treatment led to irreparable replication fork movement, and the stalled replication fork might have degraded by MRE-11, which ultimately results in apoptosis and the death of the CSCs.
Keywords: apoptosis; cancer stem cells; fork degradation; hybrid nanoparticles; rereplication.