Background: Mucin-type O-glycosylation (referred to as O-GalNAc glycosylation) is the most abundant O-glycosylation on membrane and secretory proteins. Recently several evidences suggest that nuclear or cytoplasmic proteins might also have O-GalNAc glycosylation. However, what nucleocytoplasmic proteins are O-GalNAc glycosylated and what the biological function of this modification in cells are still poorly understood. Previously, we reported the tumor suppressor p53 could be O-GalNAc glycosylated in vitro. To investigate the existence and function of O-GalNAc glycosylation on nucleocytoplasmic proteins in cell, p53 as a representative nucleocytoplasmic protein was studied.
Methods: Using lectin blotting with GalNAc specific lectins, enzymatic treatments with O-GlcNAcase, core 1 β1, 3-galactosyltransferase and O-glycosidase, and metabolic labeling with un-O-acetylated GalNAz in UDP-Gal/UDP-GalNAc 4-epimerase (GALE) knockout cells, we validated the O-GalNAc glycosylation on p53. Using mass spectrometry analysis and site-directed mutagenesis, we identified the glycosylated sites and studied the functions of O-GalNAc glycosylation on p53.
Results: The p53 was O-GalNAc glycosylated in cells. Ser121 residue was one of the glycosylated sites on p53. The O-GalNAc glycosylation at Ser121 was associated with the stability and activity of p53.
Conclusions: These results revealed that the O-GalNAc glycosylation was a novel modification on p53.
General significance: Our study provided a pilot evidence that the O-GalNAc glycosylation existed on nucleocytoplasmic protein.
Keywords: GalNAz-metabolic labeling; Nucleocytoplasmic protein; O-GalNAc glycosylation; UDP-Gal/UDP-GalNAc 4-epimerase; p53.
Copyright © 2020 Elsevier B.V. All rights reserved.