Rhythmic auditory stimuli (RAS) have been proposed to improve motor performance in populations with and without sensorimotor impairments. However, the reasons for the reported benefits are poorly understood. One idea is that RAS may supplement intrinsic feedback when other sensory input is diminished. The current experiment tested this idea by removing vision during a goal-directed reaching task. We hypothesized that any improvements in movement performance due to the RAS would be greater when vision was removed. Twenty-two typically developing adults performed reaching movements to one of two targets with RAS presented before movement initiation, after movement initiation, both before and after movement initiation, and no sound, all with and without vision. Dependent variables were analyzed using a 2 vision by 2 sound-before by 2 sound-during repeated measures ANOVA. Conditions where the metronome was heard before movement initiation yielded shorter and less variable reaction times compared when there was no sound before the movement. The RAS heard before and during the movement independently impacted spatial aspects of the movement. Sound before movement initiation resulted in smaller endpoint error, primarily in the anterior-posterior axis. Sound during the movement resulted in smaller endpoint error, primarily in the mediolateral axis. In no-vision blocks, inclusion of RAS resulted in improved endpoint performance, indicating that RAS supplemented the motor system. The present results strengthen our understanding of sensory integration underlying reaching performance by demonstrating that sound heard before and during a reaching movement can improve motor performance by supplementing the motor system when vision is unavailable.
Keywords: Attention; Goal-directed aiming; Kinematics; Motor control; PsycINFO code: 2330 motor processes; Reaching; Rhythmic cueing; Vision.
Crown Copyright © 2020. Published by Elsevier B.V. All rights reserved.