In this work, we have analyzed the main clinical and corneal histological parameters that may be associated to the spherical equivalent (SE), age and gender of individuals with myopic refractive errors. For this purpose, 108 cornea stroma lenticules were obtained from patients subjected to ReLEx-SMILE myopia correction. Histological analyses were carried out and histochemistry and immunohistochemistry were used to quantify key histological components of the cornea stroma, including mature collagen fibers, reticular and elastic fibers, glycoproteins, proteoglycans, type-V collagen and several crystallins. Clinical and histological data were analyzed to determine their association with SE, age and gender. Results showed a significant correlation between the age range of the patients and the expression of crystallins CRY-α-A, CRY-λ1 and type-V collagen and between CRY-λ1 and corneal thickness, spherical diopters (D) and SE, although correlation between CRY-λ1 and SE was non-significant when age was controlled. Comparison of cases with low myopia and high/moderate myopia found statistical differences for D and lenticule thickness and diameter. The binary logistic regression analysis allowed us to construct a model using two clinical parameters (D and lenticule thickness). Parameters showing significant correlation with the age were the corneal radius, keratometry reading (K), OZ, CRY-α-A and type-V collagen, whereas SE, lenticule thickness, OZ, CRY-λ1 and type-V collagen showed statistically significant differences between the youngest and the oldest patients. A binary logistic regression analysis model was generated including 3 variables (D, cornea radius and OZ). No gender differences were found. The specific clinical and histological modifications found to be associated to the SE and age could be useful for a better understanding of the mechanisms involved in the genesis or progression of myopia and could establish the basement for future therapeutic options.
Keywords: Age; Corneal stroma; Gender; Histology; Myopia; Spherical equivalent.
Copyright © 2020 Elsevier Ltd. All rights reserved.