Purpose: To model absolute neutrophil count (ANC) suppression in response to acute radiation (AR) exposure and evaluate ANC time course as a predictor of overall survival (OS) in response to AR exposure with or without treatment with granulocyte colony-stimulating factor in nonhuman primates.
Methods: Source data were obtained from two pivotal studies conducted in rhesus macaques exposed to 750 cGy of whole body irradiation on day 0 that received either placebo, daily filgrastim, or pegfilgrastim (days 1 and 8 after irradiation). Animals were observed for 60 days with ANC measured every 1 to 2 days. The population model of ANC response to AR and the link between observed ANC time course and OS consisted of three submodels characterizing injury due to radiation, granulopoiesis, and a time-to-event model of OS.
Results: The ANC response model accurately described the effects of AR exposure on the duration of neutropenia. ANC was a valid surrogate for survival because it explained 76% (95% CI, 41%-97%) and 73.2% (95% CI, 38.7%-99.9%) of the treatment effect for filgrastim and pegfilgrastim, respectively.
Conclusion: The current model linking radiation injury to neutropenia and ANC time course to OS can be used as a basis for translating these effects to humans.
Keywords: Acute radiation syndrome; filgrastim; neutropenia; overall survival; pegfilgrastim.