Mott gap collapse in lightly hole-doped Sr2-xKxIrO4

Nat Commun. 2020 May 22;11(1):2597. doi: 10.1038/s41467-020-16425-z.

Abstract

The evolution of Sr2IrO4 upon carrier doping has been a subject of intense interest, due to its similarities to the parent cuprates, yet the intrinsic behaviour of Sr2IrO4 upon hole doping remains enigmatic. Here, we synthesize and investigate hole-doped Sr2-xKxIrO4 utilizing a combination of reactive oxide molecular-beam epitaxy, substitutional diffusion and in-situ angle-resolved photoemission spectroscopy. Upon hole doping, we observe the formation of a coherent, two-band Fermi surface, consisting of both hole pockets centred at (π, 0) and electron pockets centred at (π/2, π/2). In particular, the strong similarities between the Fermi surface topology and quasiparticle band structure of hole- and electron-doped Sr2IrO4 are striking given the different internal structure of doped electrons versus holes.