African animal trypanosomiases (AAT) remain the major constraint for livestock production, agriculture and food security in Africa. Although several control measures have been developed to fight AAT, the use of trypanocides remains the main strategy in most affected poor and rural communities. However, several studies have highlighted drug-resistant-trypanosome infections in many African countries, though this phenomenon is still not well described. This study aims to detect trypanosome species and the molecular profiles of drug-resistant-trypanosomes in naturally infected domestic animals of Yoko in the centre region of southern Cameroon. Therefore, in October 2017, 348 animals were blood sampled. The level of packed cell volume (PCV) was evaluated in each animal and trypanosome infections were investigated with the capillary tube centrifugation technique (CTC). Thereafter, DNA was extracted from blood samples and different trypanosome species were identified by PCR. The resistant/sensitive molecular profiles of trypanosomes for diminazene aceturate (DA) and isometamidium chloride (ISM) were investigated by PCR-RFLP. About 18.4% (64/348) of animals analyzed by PCR were found with trypanosome infections including Trypanosoma vivax, Trypanosoma brucei s.l. and Trypanosoma congolense forest and savannah. Trypanosoma congolense savannah was the predominant species with an infection rate of 15.2%. Between villages, significant (p˂0.0001) differences were found in the overall trypanosome infection rates. No molecular profile for ISM resistant-trypanosomes was identified. Conversely, about 88.9% (40/45) of T. congolense positive samples have shown molecular profiles of DA-resistant strains while the remaining 11.1% (5/45) showed mixed molecular profiles of resistant/sensitive strains. Results showed that the molecular profiles of DA-resistant strains of T. congolense in domestic animals of Yoko were widespread. This data needs to be confirmed by testing in vivo the drug susceptibilities of the trypanosome strains herein detected. In conclusion, appropriate future control measures are required. In addition to the intensification of vector control, ISM is advised for the treatment of animals infected by trypanosomes.
Keywords: Animal African trypanosomiasis; Diminazene aceturate; Drug resistance; Isometamidium chloride; Trypanosome.
Copyright © 2020 Elsevier B.V. All rights reserved.