A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in BRAF-Driven Pediatric Low-Grade Glioma Cells

Mol Cancer Ther. 2020 Aug;19(8):1736-1750. doi: 10.1158/1535-7163.MCT-19-1021. Epub 2020 May 25.

Abstract

Pilocytic astrocytomas as well as other pediatric low-grade gliomas (pLGG) exhibit genetic events leading to aberrant activation of the MAPK pathway. The most common alterations are KIAA1549:BRAF fusions and BRAFV600E and NF1 mutations. Novel drugs targeting the MAPK pathway (MAPKi) are prime candidates for the treatment of these single-pathway diseases. We aimed to develop an assay suitable for preclinical testing of MAPKi in pLGGs with the goal to identify novel MAPK pathway-suppressing synergistic drug combinations. A reporter plasmid (pDIPZ) with a MAPK-responsive ELK-1-binding element driving the expression of destabilized firefly luciferase was generated and packaged using a lentiviral vector system. Pediatric glioma cell lines with a BRAF fusion (DKFZ-BT66) and a BRAFV600E mutation (BT-40) background, respectively, were stably transfected. Modulation of the MAPK pathway activity by MAPKi was measured using the luciferase reporter and validated by detection of phosphorylated protein levels. A screening of a MAPKi library was performed, and synergy of selected combinations was calculated. Screening of a MAPKi library revealed MEK inhibitors as the class inhibiting the pathway with the lowest IC50s, followed by ERK and next-generation RAF inhibitors. Combination treatments with different MAPKi classes showed synergistic effects in BRAF fusion as well as BRAFV600E mutation backgrounds. Here, we report a novel reporter assay for medium- to high-throughput preclinical drug testing in pLGG cell lines. The assay confirmed MEK, ERK, and next-generation RAF inhibitors as potential treatment approaches for KIAA1549:BRAF and BRAFV600E-mutated pLGGs. In addition, the assay revealed that combination treatments synergistically suppressed MAPK pathway activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Cell Proliferation
  • Child
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Genes, Reporter*
  • Glioma / drug therapy
  • Glioma / genetics
  • Glioma / metabolism
  • Glioma / pathology*
  • Humans
  • Mitogen-Activated Protein Kinases / analysis*
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism
  • Mutation*
  • Neoplasm Grading
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins B-raf / genetics*
  • Tumor Cells, Cultured

Substances

  • Biomarkers, Tumor
  • Protein Kinase Inhibitors
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Mitogen-Activated Protein Kinases