Overgrowth (Della) mutants of wheat: development, growth and yield of intragenic suppressors of the Rht-B1c dwarfing gene

Funct Plant Biol. 2017 May;44(5):525-537. doi: 10.1071/FP16262.

Abstract

A suppressor screen using the dwarf Rht-B1c Della mutant of wheat (Triticum aestivum L.) led to the isolation of overgrowth mutants, which retained the original dwarfing gene but grew at a faster rate because of a new mutation elsewhere in that gene. Forty-six alleles were identified, which included amino acid substitutions, premature stop codons, and splice site alterations. The sites of amino acid substitution were primarily localised around conserved motifs in the DELLA protein, and these mutants showed a wide range in their extent of growth recovery (dwarf, semidwarf, tall). Detailed growth comparisons were made on a wide height range of backcrossed overgrowth alleles, comparing stem and spike growth, leaf size, tillering, phenological development, coleoptile length, grain dormancy and grain yield. There were large and reproducible differences between alleles for some traits, whereas others were largely unaffected or varied with growth conditions. Some of the overgrowth alleles offer promise as alternatives to the Rht-B1b and Rht-D1b dwarfing genes, allowing a wider range of height control, improved grain dormancy and equivalent grain yield. The collection of mutants will also be valuable as a resource to study the effect of height on different physiological or agronomic traits, and in elucidating DELLA protein function.