Background: There is not a comprehensive heat stress index to screen the people susceptible to heat disorders and illnesses in hot workplaces. The present study was aimed to develop a personal heat strain risk assessment (PHSRA) index in workplaces and validate it.
Methods: This cross-sectional study was carried out on 201 Iranian male employees under various thermal conditions. At first, the demographical data of participants were gathered. After that, the heart rate and tympanic temperature of the subjects were carefully measured at times of 30, 60, and 90 min of starting the work. Environmental factors were measured simultaneously. The metabolism rate and insulation value of clothes were also estimated. At the end, a novel index of the heat strain was developed using structural equation modeling in AMOS and validated using linear regression analysis in SPSS.
Results: Indirect effect coefficients of personal factors including age, body mass index, maximum aerobic capacity, and body surface area were equal to 0.031, 0.145, - 0.064, and 0.106, respectively. The coefficients of main factors including dry temperature, wet temperature, globe temperature, wind speed, metabolism, and clothing thermal insulation were obtained as 0.739, 0.688, 0.765, 0.245, 0.482, and 0.383, respectively. These coefficients and normalized values of the factors were used to develop a novel index. The total score of the index was categorized into four levels by optimal cut-off points of 12.93, 16.48, and 18.87. Based on the results of regression analysis, this index justifies 77% of the tympanic temperature as a dependent variable (R2 = 0.77).
Conclusions: In general, the results indicated that the novel index developed by the personal and main factors had proper validity in the prediction of thermal strain.
Keywords: Heat stress; Main factors; Personal factors; Risk assessment.