On the basis of a set of machine learning predictions of glass formation in the Ni-Ti-Al system, we have undertaken a high-throughput experimental study of that system. We utilized rapid synthesis followed by high-throughput structural and electrochemical characterization. Using this dual-modality approach, we are able to better classify the amorphous portion of the library, which we found to be the portion with a full width at half maximum (fwhm) of >0.42 Å-1 for the first sharp X-ray diffraction peak. Proper phase labeling is important for future machine learning efforts. We demonstrate that the fwhm and corrosion resistance are correlated but that, while chemistry still plays a role in corrosion resistance, a large fwhm, attributed to a glassy phase, is necessary for the highest corrosion resistance.
Keywords: corossion; high-throughput; machine learning; metallic glass; scanning droplet cell.