In this study, a novel composite composed of iron monosulfide nanoparticles (FeS NPs) and titanate nanotubes (TNTs) was hydrothermally synthesized. Characterizations revealed the encapsulation and homogenous dispersion of FeS NPs into the interlayers of TNTs. Significant performance in removal of aqueous total Cr was acquired by efficient conversion of Cr(VI) to Cr(III) on FeS and simultaneous adsorption of Cr(III) on TNTs. Moreover, the high activity of FeS-TNTs in reduction of Cr(VI) can maintain at high oxicity or alkalinity of its solution. The synergistic effect between FeS and TNTs was derived from sheltering of FeS NPs from their self-aggregation, O2-oxidation and the affinity of Cr(III) to TNTs. The unique properties, e.g. the solid acidity, the hollow and interlayered configuration of TNTs played important roles in high activity, good stability and reusability of FeS-TNTs.
Keywords: Adsorption; Chromium; FeS-TNTs; Reduction; Synergy.
Copyright © 2020 Elsevier B.V. All rights reserved.