Hepatocyte-specific TAK1 deficiency drives RIPK1 kinase-dependent inflammation to promote liver fibrosis and hepatocellular carcinoma

Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14231-14242. doi: 10.1073/pnas.2005353117. Epub 2020 Jun 8.

Abstract

Transforming growth factor β-activated kinase1 (TAK1) encoded by the gene MAP3K7 regulates multiple important downstream effectors involved in immune response, cell death, and carcinogenesis. Hepatocyte-specific deletion of TAK1 in Tak1ΔHEP mice promotes liver fibrosis and hepatocellular carcinoma (HCC) formation. Here, we report that genetic inactivation of RIPK1 kinase using a kinase dead knockin D138N mutation in Tak1ΔHEP mice inhibits the expression of liver tumor biomarkers, liver fibrosis, and HCC formation. Inhibition of RIPK1, however, has no or minimum effect on hepatocyte loss and compensatory proliferation, which are the recognized factors important for liver fibrosis and HCC development. Using single-cell RNA sequencing, we discovered that inhibition of RIPK1 strongly suppresses inflammation induced by hepatocyte-specific loss of TAK1. Activation of RIPK1 promotes the transcription of key proinflammatory cytokines, such as CCL2, and CCR2+ macrophage infiltration. Our study demonstrates the role and mechanism of RIPK1 kinase in promoting inflammation, both cell-autonomously and cell-nonautonomously, in the development of liver fibrosis and HCC, independent of cell death, and compensatory proliferation. We suggest the possibility of inhibiting RIPK1 kinase as a therapeutic strategy for reducing liver fibrosis and HCC development by inhibiting inflammation.

Keywords: RIPK1; TAK1; cancer; cell death; inflammation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers, Tumor
  • Carcinogenesis / genetics
  • Carcinogenesis / pathology
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism*
  • Cell Death
  • Chemokine CCL2 / metabolism
  • Cytokines / metabolism
  • Disease Models, Animal
  • Gene Expression Regulation, Neoplastic
  • Hepatocytes / metabolism*
  • Hepatocytes / pathology
  • Inflammation / metabolism*
  • Inflammation / pathology
  • Liver Cirrhosis / metabolism*
  • Liver Cirrhosis / pathology
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism*
  • MAP Kinase Kinase Kinases / genetics
  • MAP Kinase Kinase Kinases / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Receptor-Interacting Protein Serine-Threonine Kinases / genetics
  • Receptor-Interacting Protein Serine-Threonine Kinases / metabolism*
  • Receptors, CCR2 / metabolism

Substances

  • Biomarkers, Tumor
  • Ccl2 protein, mouse
  • Ccr2 protein, mouse
  • Chemokine CCL2
  • Cytokines
  • Receptors, CCR2
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Ripk1 protein, mouse
  • MAP Kinase Kinase Kinases
  • MAP kinase kinase kinase 7