Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies

Heredity (Edinb). 2020 Sep;125(3):138-154. doi: 10.1038/s41437-020-0325-9. Epub 2020 Jun 9.

Abstract

Sex-chromosome systems tend to be highly conserved and knowledge about their evolution typically comes from macroevolutionary inference. Rapidly evolving complex sex-chromosome systems represent a rare opportunity to study the mechanisms of sex-chromosome evolution at unprecedented resolution. Three cryptic species of wood-white butterflies-Leptidea juvernica, L. sinapis and L. reali-have each a unique set of multiple sex-chromosomes with 3-4 W and 3-4 Z chromosomes. Using a transcriptome-based microarray for comparative genomic hybridisation (CGH) and a library of bacterial artificial chromosome (BAC) clones, both developed in L. juvernica, we identified Z-linked Leptidea orthologs of Bombyx mori genes and mapped them by fluorescence in situ hybridisation (FISH) with BAC probes on multiple Z chromosomes. In all three species, we determined synteny blocks of autosomal origin and reconstructed the evolution of multiple sex-chromosomes. In addition, we identified W homologues of Z-linked orthologs and characterised their molecular differentiation. Our results suggest that the multiple sex-chromosome system evolved in a common ancestor as a result of dynamic genome reshuffling through repeated rearrangements between the sex chromosomes and autosomes, including translocations, fusions and fissions. Thus, the initial formation of neo-sex chromosomes could not have played a role in reproductive isolation between these Leptidea species. However, the subsequent species-specific fissions of several neo-sex chromosomes could have contributed to their reproductive isolation. Then, significantly increased numbers of Z-linked genes and independent neo-W chromosome degeneration could accelerate the accumulation of genetic incompatibilities between populations and promote their divergence resulting in speciation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Butterflies* / genetics
  • Evolution, Molecular*
  • Female
  • Sex Chromosomes*
  • Synteny*

Associated data

  • figshare/10.6084/m9.figshare.11889771