Background: Lung cancer is the most common cancer worldwide, and metastasis is the leading cause of lung cancer related death. However, the molecular network involved in lung cancer metastasis remains incompletely described. Here, we aimed to construct a metastasis-associated ceRNA network and identify a lncRNA prognostic signature in lung cancer.
Methods: RNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and gene set enrichment analysis (GSEA) were performed to investigate the function of these genes. Using Cox regression analysis, we found that a 6 lncRNA signature may serve as a candidate prognostic factor in lung cancer. Finally, we used Transwell assays with lung cancer cell lines to verify that LINC01010 acts as a tumor suppressor.
Results: We identified 1249 differentially expressed (DE) mRNAs, 440 DE lncRNAs and 26 DE miRNAs between nonmetastatic and metastatic lung cancer tissues. GO and KEGG analyses confirmed that the identified DE mRNAs are involved in lung cancer metastasis. Using bioinformatics tools, we constructed a metastasis-associated ceRNA network for lung cancer that includes 117 mRNAs, 23 lncRNAs and 22 miRNAs. We then identified a 6 lncRNA signature (LINC01287, SNAP25-AS1, LINC00470, AC104809.2, LINC00645 and LINC01010) that had the greatest prognostic value for lung cancer. Furthermore, we found that suppression of LINC01010 promoted lung cancer cell migration and invasion.
Conclusions: This study might provide insight into the identification of potential lncRNA biomarkers for diagnosis and prognosis in lung cancer.
Keywords: LINC01010; Lung cancer; Metastasis; ceRNA; lncRNA.
© The Author(s) 2020.