Introduction: Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder affecting multiple systems, due to inactivating mutations of TSC1 or TSC2 mTOR pathway genes. Neurological manifestations are observed in about 95% cases, representing the most frequent cause of morbidity and one of the most common causes of mortality.
Background: Neuroimaging is crucial for early diagnosis, monitoring, and management of these patients. While computed tomography is generally used as first-line investigation at emergency department, magnetic resonance imaging is the reference method to define central nervous system involvement and investigate subtle pathophysiological alterations in TSC patients.
Purpose: Here, we review the state-of-the-art knowledge in TSC brain imaging, describing conventional findings and depicting the role of advanced techniques in providing new insights on the disease, also offering an overview on future perspectives of neuroimaging applications for a better understanding of disease pathophysiology.
Keywords: Autism; Central nervous system; Epilepsy; Magnetic resonance imaging; Sub-ependymal giant cell astrocytoma; Tuberous sclerosis complex.