Auger-Meitner processes are electronic decay processes of energetically low-lying vacancies. In these processes, the vacancy is filled by an electron of an energetically higher lying orbital, while another electron is simultaneously emitted to the continuum. In low-lying orbitals, relativistic effects can not, even for light elements, be neglected. At the same time, lifetime calculations are computationally expensive. In this context, we investigate which effect spin-orbit coupling has on Auger-Meitner decay widths and aim for a rule of thumb for the relative decay widths of initial states split by spin-orbit coupling. We base this rule of thumb on Auger-Meitner decay widths of Sr4p-1 and Ra6p-1 obtained by relativistic FanoADC-Stieltjes calculations and validate it against Auger-Meitner decay widths from the literature.